data_overview_2.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387
  1. # -*- coding: utf-8 -*-
  2. """
  3. Code for generating the second data figure in the manuscript.
  4. Authors: Julia Sprenger, Lyuba Zehl, Michael Denker
  5. Copyright (c) 2017, Institute of Neuroscience and Medicine (INM-6),
  6. Forschungszentrum Juelich, Germany
  7. All rights reserved.
  8. Redistribution and use in source and binary forms, with or without
  9. modification, are permitted provided that the following conditions are met:
  10. * Redistributions of source code must retain the above copyright notice, this
  11. list of conditions and the following disclaimer.
  12. * Redistributions in binary form must reproduce the above copyright notice,
  13. this list of conditions and the following disclaimer in the documentation
  14. and/or other materials provided with the distribution.
  15. * Neither the names of the copyright holders nor the names of the contributors
  16. may be used to endorse or promote products derived from this software without
  17. specific prior written permission.
  18. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  22. FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  23. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  24. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  25. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  26. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  27. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. """
  29. import os
  30. import matplotlib.pyplot as plt
  31. from matplotlib import gridspec, transforms
  32. import quantities as pq
  33. import numpy as np
  34. from neo import (AnalogSignal, SpikeTrain)
  35. from neo.utils import *
  36. from reachgraspio import reachgraspio
  37. from neo_utils import load_segment
  38. # =============================================================================
  39. # Define data and metadata directories and general settings
  40. # =============================================================================
  41. def get_monkey_datafile(monkey):
  42. if monkey == "Lilou":
  43. return "l101210-001" # ns2 (behavior) and ns5 present
  44. elif monkey == "Nikos2":
  45. return "i140703-001" # ns2 and ns6 present
  46. else:
  47. return ""
  48. # Enter your dataset directory here
  49. datasetdir = os.path.join('..', 'datasets')
  50. chosen_els = {'Lilou': range(3, 97, 7), 'Nikos2': range(1, 97, 7)}
  51. chosen_el = {
  52. 'Lilou': chosen_els['Lilou'][0],
  53. 'Nikos2': chosen_els['Nikos2'][0]}
  54. chosen_unit = 1
  55. trial_indexes = range(14)
  56. trial_index = trial_indexes[0]
  57. chosen_events = ['TS-ON', 'WS-ON', 'CUE-ON', 'CUE-OFF', 'GO-ON', 'SR-ON',
  58. 'RW-ON', 'WS-OFF'] # , 'RW-OFF'
  59. # =============================================================================
  60. # Load data and metadata for a monkey
  61. # =============================================================================
  62. # CHANGE this parameter to load data of the different monkeys
  63. # monkey = 'Nikos2'
  64. monkey = 'Lilou'
  65. datafile = get_monkey_datafile(monkey)
  66. session = reachgraspio.ReachGraspIO(
  67. filename=os.path.join(datasetdir, datafile),
  68. odml_directory=datasetdir,
  69. verbose=False)
  70. bl = session.read_block(lazy=True)
  71. # channels=chosen_els[monkey],
  72. # units=[1], # loading only unit_id 1
  73. # load_waveforms=False,
  74. # load_events=True,
  75. # scaling='voltage')
  76. seg = bl.segments[0]
  77. # get start and stop events of trials
  78. start_events = get_events(
  79. seg, **{
  80. 'name': 'TrialEvents',
  81. 'trial_event_labels': 'TS-ON',
  82. 'performance_in_trial': session.performance_codes['correct_trial']})
  83. stop_events = get_events(
  84. seg, **{
  85. 'name': 'TrialEvents',
  86. 'trial_event_labels': 'RW-ON',
  87. 'performance_in_trial': session.performance_codes['correct_trial']})
  88. # there should only be one event object for these conditions
  89. assert len(start_events) == 1
  90. assert len(stop_events) == 1
  91. # insert epochs between 10ms before TS to 50ms after RW corresponding to trails
  92. ep = add_epoch(seg,
  93. start_events[0],
  94. stop_events[0],
  95. pre=-250 * pq.ms,
  96. post=500 * pq.ms,
  97. segment_type='complete_trials')
  98. ep.array_annotate(trialtype=start_events[0].array_annotations['belongs_to_trialtype'])
  99. # access single epoch of this data_segment
  100. epochs = get_epochs(seg, **{'segment_type': 'complete_trials'})
  101. assert len(epochs) == 1
  102. # remove spiketrains not belonging to chosen_electrode
  103. seg.spiketrains = seg.filter(targdict={'unit_id': chosen_unit},
  104. recursive=True, objects='SpikeTrainProxy')
  105. # remove all non-neural signals
  106. seg.analogsignals = seg.filter(targdict={'neural_signal': True},
  107. objects='AnalogSignalProxy')
  108. # use prefiltered data if multiple versions are present
  109. raw_signal = seg.analogsignals[0]
  110. for sig in seg.analogsignals:
  111. if sig.sampling_rate < raw_signal.sampling_rate:
  112. raw_signal = sig
  113. seg.analogsignals = [raw_signal]
  114. # replacing the segment with a new segment containing all data
  115. # to speed up cutting of segments
  116. seg = load_segment(seg, load_wavefroms=True)
  117. # only keep the chosen electrode signal in the AnalogSignal object
  118. mask = np.isin(seg.analogsignals[0].array_annotations['channel_ids'], chosen_els[monkey])
  119. seg.analogsignals[0] = seg.analogsignals[0][:, mask]
  120. # cut segments according to inserted 'complete_trials' epochs and reset trial
  121. # times
  122. cut_segments = cut_segment_by_epoch(seg, epochs[0], reset_time=True)
  123. # explicitly adding trial type annotations to cut segments
  124. for i, cut_seg in enumerate(cut_segments):
  125. cut_seg.annotate(trialtype=epochs[0].array_annotations['trialtype'][i])
  126. # =============================================================================
  127. # Define figure and subplot axis for first data overview
  128. # =============================================================================
  129. fig = plt.figure(facecolor='w')
  130. fig.set_size_inches(7.0, 9.9) # (w, h) in inches
  131. # #(7.0, 9.9) corresponds to A4 portrait ratio
  132. gs = gridspec.GridSpec(
  133. nrows=2,
  134. ncols=2,
  135. left=0.1,
  136. bottom=0.05,
  137. right=0.9,
  138. top=0.975,
  139. wspace=0.1,
  140. hspace=0.1,
  141. width_ratios=None,
  142. height_ratios=[2, 1])
  143. ax1 = plt.subplot(gs[0, 0]) # top left
  144. ax2 = plt.subplot(gs[0, 1], sharex=ax1) # top right
  145. ax3 = plt.subplot(gs[1, 0], sharex=ax1) # bottom left
  146. ax4 = plt.subplot(gs[1, 1], sharex=ax1) # bottom right
  147. fontdict_titles = {'fontsize': 9, 'fontweight': 'bold'}
  148. fontdict_axis = {'fontsize': 10, 'fontweight': 'bold'}
  149. # the x coords of the event labels are data, and the y coord are axes
  150. event_label_transform = transforms.blended_transform_factory(ax1.transData,
  151. ax1.transAxes)
  152. trialtype_colors = {
  153. 'SGHF': 'MediumBlue', 'SGLF': 'Turquoise',
  154. 'PGHF': 'DarkGreen', 'PGLF': 'YellowGreen',
  155. 'LFSG': 'Orange', 'LFPG': 'Yellow',
  156. 'HFSG': 'DarkRed', 'HFPG': 'OrangeRed',
  157. 'SGSG': 'SteelBlue', 'PGPG': 'LimeGreen',
  158. None: 'black'}
  159. event_colors = {
  160. 'TS-ON': 'indigo', 'TS-OFF': 'indigo',
  161. 'WS-ON': 'purple', 'WS-OFF': 'purple',
  162. 'CUE-ON': 'crimson', 'CUE-OFF': 'crimson',
  163. 'GO-ON': 'orangered', 'GO-OFF': 'orangered',
  164. 'SR-ON': 'darkorange',
  165. 'RW-ON': 'orange', 'RW-OFF': 'orange'}
  166. electrode_cmap = plt.get_cmap('bone')
  167. electrode_colors = [electrode_cmap(x) for x in
  168. np.tile(np.array([0.3, 0.7]), int(len(chosen_els[monkey]) / 2))]
  169. time_unit = 'ms'
  170. lfp_unit = 'uV'
  171. # define scaling factors for analogsignals
  172. anasig_std = np.mean(np.std(cut_segments[trial_index].analogsignals[0].rescale(lfp_unit), axis=0))
  173. anasig_offset = 3 * anasig_std
  174. # =============================================================================
  175. # SUPPLEMENTARY PLOTTING functions
  176. # =============================================================================
  177. def add_scalebar(ax, std):
  178. # the x coords of the scale bar are axis, and the y coord are data
  179. scalebar_transform = transforms.blended_transform_factory(ax.transAxes,
  180. ax.transData)
  181. # adding scalebar
  182. yscalebar = max(int(std.rescale(lfp_unit)), 1) * getattr(pq, lfp_unit) * 2
  183. scalebar_offset = -2 * std
  184. ax.vlines(x=0.4,
  185. ymin=(scalebar_offset - yscalebar).magnitude,
  186. ymax=scalebar_offset.magnitude,
  187. color='k',
  188. linewidth=4,
  189. transform=scalebar_transform)
  190. ax.text(0.4, (scalebar_offset - 0.5 * yscalebar).magnitude,
  191. ' %i %s' % (yscalebar.magnitude, lfp_unit),
  192. ha="left", va="center", rotation=0, color='k',
  193. size=8, transform=scalebar_transform)
  194. # =============================================================================
  195. # PLOT DATA OF SINGLE TRIAL (left plots)
  196. # =============================================================================
  197. # get data of selected trial
  198. selected_trial = cut_segments[trial_index]
  199. # PLOT DATA FOR EACH CHOSEN ELECTRODE
  200. for el_idx, electrode_id in enumerate(chosen_els[monkey]):
  201. # PLOT ANALOGSIGNALS in upper plot
  202. chosen_el_idx = np.where(cut_segments[0].analogsignals[0].array_annotations['channel_ids'] == electrode_id)[0][0]
  203. anasig = selected_trial.analogsignals[0][:, chosen_el_idx]
  204. ax1.plot(anasig.times.rescale(time_unit),
  205. np.asarray(anasig.rescale(lfp_unit))
  206. + anasig_offset.magnitude * el_idx,
  207. color=electrode_colors[el_idx])
  208. # PLOT SPIKETRAINS in lower plot
  209. spiketrains = selected_trial.filter(
  210. channel_id=electrode_id, objects=SpikeTrain)
  211. for spiketrain in spiketrains:
  212. ax3.plot(spiketrain.times.rescale(time_unit),
  213. np.zeros(len(spiketrain.times)) + el_idx, 'k|')
  214. # PLOT EVENTS in both plots
  215. for event_type in chosen_events:
  216. # get events of each chosen event type
  217. event_data = get_events(selected_trial,
  218. **{'trial_event_labels': event_type})
  219. for event in event_data:
  220. event_color = event_colors[event.array_annotations['trial_event_labels'][0]]
  221. # adding lines
  222. for ax in [ax1, ax3]:
  223. ax.axvline(event.times.rescale(time_unit),
  224. color=event_color,
  225. zorder=0.5)
  226. # adding labels
  227. ax1.text(event.times.rescale(time_unit), 0,
  228. event.array_annotations['trial_event_labels'][0],
  229. ha="center", va="top", rotation=45, color=event_color,
  230. size=8, transform=event_label_transform)
  231. # SUBPLOT ADJUSTMENTS
  232. ax1.set_title('single trial', fontdict=fontdict_titles)
  233. ax1.set_ylabel('electrode id', fontdict=fontdict_axis)
  234. ax1.set_yticks(np.arange(len(chosen_els[monkey])) * anasig_offset)
  235. ax1.set_yticklabels(chosen_els[monkey])
  236. ax1.autoscale(enable=True, axis='y')
  237. plt.setp(ax1.get_xticklabels(), visible=False) # show no xticklabels
  238. ax3.set_ylabel('electrode id', fontdict=fontdict_axis)
  239. ax3.set_yticks(range(0, len(chosen_els[monkey])))
  240. ax3.set_yticklabels(np.asarray(chosen_els[monkey]))
  241. ax3.set_ylim(-1, len(chosen_els[monkey]))
  242. ax3.set_xlabel('time [%s]' % time_unit, fontdict=fontdict_axis)
  243. # ax3.autoscale(axis='y')
  244. # =============================================================================
  245. # PLOT DATA OF SINGLE ELECTRODE
  246. # =============================================================================
  247. # plot data for each chosen trial
  248. chosen_el_idx = np.where(cut_segments[0].analogsignals[0].array_annotations['channel_ids'] == chosen_el[monkey])[0][0]
  249. for trial_idx, trial_id in enumerate(trial_indexes):
  250. trial_spikes = cut_segments[trial_id].filter(channel_id=chosen_el[monkey], objects='SpikeTrain')
  251. trial_type = cut_segments[trial_id].annotations['trialtype']
  252. trial_color = trialtype_colors[trial_type]
  253. t_signal = cut_segments[trial_id].analogsignals[0][:, chosen_el_idx]
  254. # PLOT ANALOGSIGNALS in upper plot
  255. ax2.plot(t_signal.times.rescale(time_unit),
  256. np.asarray(t_signal.rescale(lfp_unit))
  257. + anasig_offset.magnitude * trial_idx,
  258. color=trial_color, zorder=1)
  259. for t_data in trial_spikes:
  260. # PLOT SPIKETRAINS in lower plot
  261. ax4.plot(t_data.times.rescale(time_unit),
  262. np.ones(len(t_data.times)) + trial_idx, 'k|')
  263. # PLOT EVENTS in both plots
  264. for event_type in chosen_events:
  265. # get events of each chosen event type
  266. event_data = get_events(cut_segments[trial_id], **{'trial_event_labels': event_type})
  267. for event in event_data:
  268. color = event_colors[event.array_annotations['trial_event_labels'][0]]
  269. ax2.vlines(x=event.times.rescale(time_unit),
  270. ymin=(trial_idx - 0.5) * anasig_offset,
  271. ymax=(trial_idx + 0.5) * anasig_offset,
  272. color=color,
  273. zorder=2)
  274. ax4.vlines(x=event.times.rescale(time_unit),
  275. ymin=trial_idx + 1 - 0.4,
  276. ymax=trial_idx + 1 + 0.4,
  277. color=color,
  278. zorder=0.5)
  279. # SUBPLOT ADJUSTMENTS
  280. ax2.set_title('single electrode', fontdict=fontdict_titles)
  281. ax2.set_ylabel('trial id', fontdict=fontdict_axis)
  282. ax2.set_yticks(np.asarray(trial_indexes) * anasig_offset)
  283. ax2.set_yticklabels(
  284. [epochs[0].array_annotations['trial_id'][_] for _ in trial_indexes])
  285. ax2.yaxis.set_label_position("right")
  286. ax2.tick_params(direction='in', length=3, labelleft='off', labelright='on')
  287. ax2.autoscale(enable=True, axis='y')
  288. add_scalebar(ax2, anasig_std)
  289. plt.setp(ax2.get_xticklabels(), visible=False) # show no xticklabels
  290. ax4.set_ylabel('trial id', fontdict=fontdict_axis)
  291. ax4.set_xlabel('time [%s]' % time_unit, fontdict=fontdict_axis)
  292. start, end = ax4.get_xlim()
  293. ax4.xaxis.set_ticks(np.arange(start, end, 1000))
  294. ax4.xaxis.set_ticks(np.arange(start, end, 500), minor=True)
  295. ax4.set_yticks(range(1, len(trial_indexes) + 1))
  296. ax4.set_yticklabels(np.asarray(
  297. [epochs[0].array_annotations['trial_id'][_] for _ in trial_indexes]))
  298. ax4.yaxis.set_label_position("right")
  299. ax4.tick_params(direction='in', length=3, labelleft='off', labelright='on')
  300. ax4.autoscale(enable=True, axis='y')
  301. # GENERAL PLOT ADJUSTMENTS
  302. # adjust font sizes of ticks
  303. for ax in [ax4.yaxis, ax4.xaxis, ax3.xaxis, ax3.yaxis]:
  304. for tick in ax.get_major_ticks():
  305. tick.label.set_fontsize(10)
  306. # adjust time range on x axis
  307. t_min = np.min([cut_segments[tid].t_start.rescale(time_unit)
  308. for tid in trial_indexes])
  309. t_max = np.max([cut_segments[tid].t_stop.rescale(time_unit)
  310. for tid in trial_indexes])
  311. ax1.set_xlim(t_min, t_max)
  312. add_scalebar(ax1, anasig_std)
  313. # =============================================================================
  314. # SAVE FIGURE
  315. # =============================================================================
  316. fname = 'data_overview_2_%s' % monkey
  317. for file_format in ['eps', 'pdf', 'png']:
  318. fig.savefig(fname + '.%s' % file_format, dpi=400, format=file_format)